The Cauchy-Dirichlet Problem for a Class of Linear Parabolic Differential Equations with Unbounded Coefficients in an Unbounded Domain
نویسنده
چکیده
Correspondence should be addressed to Gerardo Rubio, [email protected] Received 20 December 2010; Revised 18 March 2011; Accepted 19 April 2011 Academic Editor: Lukasz Stettner Copyright q 2011 Gerardo Rubio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the Cauchy-Dirichlet problem in 0,∞ × D for a class of linear parabolic partial differential equations. We assume that D ⊂ R is an unbounded, open, connected set with regular boundary. Our hypotheses are unbounded and locally Lipschitz coefficients, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution to the nonhomogeneous Cauchy-Dirichlet problem using stochastic differential equations and parabolic differential equations in bounded domains.
منابع مشابه
Numerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملExistence and Uniqueness to the Cauchy Problem for Linear and Semilinear Parabolic Equations with Local Conditions
We consider the Cauchy problem in R for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The line...
متن کاملThe Dependence of Solution Uniqueness Classes of Boundary Value Problems for General Parabolic Systems on the Geometry of an Unbounded Domain
General boundary value problems are considered for general parabolic (in the Douglas–Nirenberg–Solonnikov sense) systems. The dependence of solution uniqueness classes of these problems on the geometry of a nonbounded domain is established. The dependence of solution uniqueness classes of the first boundary value problem for a second-order parabolic equation in an unbounded domain on the domain...
متن کاملNonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients
We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014